
lingsem

Macros for Typesetting Semantics (Linguistics)

Version 0.1

Adam Liter

Last updated: July 2, 2014

Abstract

This document is documentation (pun intended) for LATEX macros that
have been written in order to make the typesetting of semantics both eas-
ier and more readable. Section 1 includes explanations of how the macros
work, using examples for illustration purposes. Section 2 provides defini-
tions of the macros themselves. Section 3 includes some kudos to Alan
Munn for helping with these macros. And, finally, section 4 documents
changes that have been made to these macros over time.

0 Introductory Remarks

These are LATEX macros that aim to make the typesetting of work in semantics
easier and the markup more readable. There is an unfortunate dearth of tools
available to do so. Perhaps these macros will become a full-fledged package at
some point. At the moment, however, the macros are rather skimpy and not, I
think, worth putting on CTAN.

That being said, any suggestions, comments, and improvements that you
might have might lead to this becoming a more robust set of macros worth
putting on CTAN. If you do have suggestions, comments, or requests, please file
them with the GitHub issue tracker. Or, if you want to contribute to develop-
ment of these macros directly, fork the repo and/or submit a pull request.

At any rate, the source code for these macros is documented below and
examples of usage are interspersed throughout this documentation. The source
code for the documentation and the source code for the macros themselves are
available in the GitHub repo.

1

http://tex.stackexchange.com/users/2693/alan-munn
http://tex.stackexchange.com/users/2693/alan-munn
http://ctan.org
http://ctan.org
https://github.com/adamliter/lingsem/issues
https://github.com/adamliter/lingsem
https://github.com/adamliter/lingsem

1 Examples & Explanations

1.1 The Interpretation Function

There are two relevant macros for typesetting text inside of the semantic inter-
pretation function (‘J K’). They are \interp and \wraptext. \interp takes an
optional argument, which can be used to relativize the interpretation function
to an assignment.1 For example, \interp{fast} produces the expression in
(1a), while \interp[g]{fast} produces the expression in (1b).

Note that the \interp command is written so that the optional argu-
ment is in a math-mode environment. Thus, for example, if we want to rel-
ativize the interpretation function to a world of interpretation, say w7, we
write \interp[w_{7}]{fast}—which produces the expression in (1c)—and not
\interp[w$_{7}$]{fast}, which will cause the compilation to crash.

(1) a. J fast K
b. J fast Kg

c. J fast Kw7

The second macro, \wraptext, is used for handling denotations that we wish
to specify that are lengthy. It exploits the fact that the two commands from
the stmaryrd package—\llbracket and \rrbracket—are written so as to be
delimiters. \wraptext goes inside the \interp command. It is written so that
it’s default optional argument value is ‘1in’.

Thus, \interp{\wraptext{example of . . .}} will produce the expres-
sion in (2a).

Similarly, if we write, \interp{\wraptext[2in]{example of . . .}}, that
will produce the expression in (2b).

The definition of the \wraptext command uses a varwidth environment,
which is made available by the varwidth package. This environment sets the
width of its contents to their natural width; thus, we need never worry about
setting the width of the \wraptext command such that the right denotation
bracket is offset because of how the text wraps, as is the case in (2c).

(2) a.

u

wwwwwww
v

example of re-
ally long text
inside an in-
terpretation
function which
will continue as
long as we like

}

�������
~

1Assignment functions are used primarily to account for indexicals like pronouns (e.g.,
Heim & Kratzer, 1998:90–95). When doing intensional semantics, we might also want to
relativize the interpretation function to a world of evaluation. The optional argument allows
us to do so.

2

http://ctan.org/pkg/stmaryrd

b.

u

w
v

example of really long text in-
side an interpretation function
which will continue as long as
we like

}

�
~

c.

t
example of really long text inside an interpreta-
tion function which will continue as long as we
like

|

1.2 Denotations & Arguments

By making minor adjustments to the \interp command, we can define two new
commands, \den and \argum, which do the exact same thing for denotations
and arguments that \interp does for text inside of the interpretation func-
tion.2 So, \den{x is fast in w} produces the expression in (3a). Similarly,
\argum{Fred} produces the expression in (3b). Both of these commands also
work with the \wraptext command just like \interp does (cf. (3c) & (3d)).

(3) a. [x is fast in w]

b. (Fred)

c.


example of a
really long de-
notation which
will continue as
long as we like



d.


example of a
really long argu-
ment which will
continue as long
as we like


1.3 λ-expressions

For lambda expressions, we can use one of two commands, either \lam or
\lamexp. \lamexp allows one to write a complete and explicit λ-expression
as in (4a). This command necessarily takes two arguments. Thus, to produce
(4a), we write \lamexp{p}{<s,t>}.

(4) a. λp ∈ D<s,t>.

b. λp.

c. λp<s,t>.

Often, though, we are satisfied with either of the abbreviations seen in (4b)
or (4c). We can produce either of these with the \lam command. This macro
takes an optional argument which can be used to specify the domain of the

2Note that these new commands no longer take an optional argument, as one—as far as I
am aware—never need specify another argument of a denotation or an argument like one often
must specify an assignment function or world of evaluation for the interpretation function.

3

variable in the λ-expression. So, \lam{p} produces the expression in (4b), and
\lam[<s,t>]{p} produces the expression in (4c).

Similar to the \interp command, note that both the \lam command and
the \lamexp are written so that all of their arguments are in a math-mode
environment.

1.4 Putting It All Together

(6) is an example—abstracting away from many minor details—of how these
commands can be used for readability’s sake for computing the semantic deriva-
tion of the structure in (5), whereas (7) is an example of what (6) might look
like without these macros.

(5)
t

t

et

e
221B Baker Street

<e,et>
lives-at

<et,t>

et

et
detective

et
famous

<et,<et,t>>
a

<<s,t>,t>

In the world of the Sherlock Holmes stories

(6) a.

u

w
v

a famous de-
tective lives
at 221B Baker
Street

}

�
~

w7,g

=
1 iff ∃x : x is famous in w7 and x is
a detective in w7 and x lives at 221B
Baker Street in w7

b.

u

wwwwwwwww
v

In the world
of the Sher-
lock Holmes
stories, a
famous de-
tective lives
at 221B
Baker Street

}

���������
~

w7,g

=

u

wwwww
v

In the
world
of the
Sherlock
Holmes
stories

}

�����
~

w7,g λw.

u

wwwww
v

a famous
detective
lives at
221B
Baker
Street

}

�����
~

w,g

=


∀w′ compatible
with the Sher-
lock Holmes
stories in w,
p(w′) = 1


λw.

u

w
v

a famous de-
tective lives
at 221B Baker
Street

}

�
~

w,g 

=
1 iff, ∀w′ compatible with the Sherlock Holmes stories in
w, ∃x : x is famous in w′ and x is a detective in w′ and x
lives at 221B Baker Street in w′

(7) a. Ja famous detective lives at 221B Baker StreetKw7,g = 1 iff ∃x : x is
famous in w7 and x is a detective in w7 and x lives at 221B Baker

4

Street in w7

b. JIn the world of the Sherlock Holmes stories, a famous detective lives
at 221B Baker StreetKw7,g = JIn the world of the Sherlock Holmes
storiesKw7,g(λw.Ja famous detective lives at 221B Baker StreetKw,g)

= [∀w′ compatible with the Sherlock Holmes stories in w, p(w′)
= 1](λw.Ja famous detective lives at 221B Baker StreetKw,g)

= 1 iff, ∀w′ compatible with the Sherlock Holmes stories in w, ∃x
: x is famous in w′ and x is a detective in w′ and x lives at 221B
Baker Street in w′

In my opinion, at least, the version in (6) looks much better and is much
more readable than the version in (7).

2 Writing the Macros

2.1 Writing the Macros Yourself

If you would like, you can follow the instructions below to write the macros
yourself.

2.1.1 Required Packages

In order to write these macros, you will need to load the following packages in
your .tex document.

• stmaryrd

• amsmath

• ragged2e

• varwidth

2.1.2 The Macros

In order to use the macros, define the following commands in the preamble of
your .tex document.

• \interp is defined as follows:

\newcommand{\interp}[2][]{

\(

\left\llbracket\,\text{#2}\,\right\rrbracket^{#1}

\)

}

• \den is defined as follows:

5

http://ctan.org/pkg/stmaryrd
http://ctan.org/pkg/amsmath
http://ctan.org/pkg/ragged2e
http://ctan.org/pkg/varwidth

\newcommand{\den}[1]{

\(

\left[\,\text{#1}\,\right]

\)

}

• \argum is defined as follows:

\newcommand{\argum}[1]{

\(

\left(\,\text{#1}\,\right)

\)

}

• \wraptext is defined as follows:

\newcommand{\wraptext}[2][1in]{

\begin{varwidth}{#1}{\RaggedRight#2}\end{varwidth}

}

• \lam is defined as follows:

\newcommand{\lam}[2][]{$\lambda {#2}_{#1}$.}

• \lamexp is defined as follows:

\newcommand{\lamexp}[2]{$\lambda {#1} \in D_{#2}$.}

2.2 Downloading the Macros

If you would rather not write the macros yourselves, you can simply download
the source code directly for these macros from the GitHub repo and place them
in your preamble.

Or, if you use TeXShop, this .tex file can then be placed in the Templates
directory (~/Library/TeXShop/Templates), which will allow you to access the
macros from the Templates menu in TeXShop.

3 Acknowledgements

The two macros, \interp & \wraptext, were written by Alan Munn in response
to a question that I posted on TeX.SX. I adapted the \den and \argum com-
mands from his macro for \interp, and I wrote the two macros for λ-expressions
myself.

4 Change Log

Version 0.1 (2014.06.02) Pushed the macros to GitHub.

6

https://github.com/adamliter/lingsem
http://tex.stackexchange.com/users/2693/alan-munn
http://tex.stackexchange.com/questions/121605/macro-for-typesetting-semantic-denotations-linguistics

References

Heim, Irene & Angelika Kratzer. 1998. Semantics in generative grammar.
Malden, MA: Blackwell Publishers Inc.

7

	Introductory Remarks
	Examples & Explanations
	The Interpretation Function
	Denotations & Arguments
	-expressions
	Putting It All Together

	Writing the Macros
	Writing the Macros Yourself
	Required Packages
	The Macros

	Downloading the Macros

	Acknowledgements
	Change Log

