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Introduction Background

Questions

How do learners generalize from data that is ambiguous between
multiple different generalizations?

I Single vs. multiple compatible generalizations?
I General vs. most precise generalization?

The above questions lead to some of the possibilities that have been
argued for.
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Introduction Background

Background
Possible Viewpoints

Simplest Generalization (SG; Chomsky and Halle 1968)

I An evaluation metric that prioritizes the simplest generalization (fewest
representational primitives to state the generalization).

Multiple Simple(st) Generalizations (MSG; Chomsky and Halle 1968;
Hayes and Wilson 2008)

I The Chomsky and Halle view is actually unclear on what happens when
there is more than one simplest generalization (defined in terms of
number of features).

I It is a reasonable extension of the view (in our opinion) to say that the
learner keeps track of all the simple(st) generalizations.

I This is also the extension adopted in Hayes and Wilson (2008).
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Introduction Background

Background
Possible Viewpoints

Subset Principle (SP; Berwick 1985)

I A more restrictive (i.e., specific) grammar is entertained first, in the
face of ambiguity.1

I Infants (age: ⇠9 months) more easily learn patterns where there is a
specific pattern (Gerken 2006).

Looks at ABA and AAB syllable patterns (e.g., dewede, leledi).

Learning proportional to specificity (PropSpec; Tenenbaum and
Griffiths 2001)

I This has been termed the Size Principle.
I The smaller the extension assigned by the generalization, the higher the

probability assigned to it (Xu and Tenenbaum 2007).
I So, learning should be proportional to the specificity of the hypothesis.

1However, look at Hale and Reiss (2003) for a representational view.
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Introduction Background

Background
Possible Viewpoints

Learn all compatible generalizations, but simplest preferred
(PropSimple; Linzen and Gallagher 2014; Linzen and O’Donnell
2015).

I There are slight differences in the two papers.
I But, the main point is that there is an initial bias for general patterns,

and the more specific pattern is learned more with increasing
experience.

I This is implemented as a bias through Bayesian prior in Linzen and
O’Donnell (2015).
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Introduction Background

Main claims in this talk

For ambiguous input, learners:

I do learn multiple generalizations.
I do not seem to track generalizations that are featurally more specific

(see Subset Principle).
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General Experiment Design Training & Testing Phases

General Experiment Design

Three experiments in total.
Each experiment had a Training and Test Phase.
Each experiment lasted about 12–15 minutes.
Participants were run in groups of 6–10.
The stimuli were presented via PsychoPy (Peirce 2007, 2009).
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General Experiment Design Training & Testing Phases

General Experiment Design
Training Phase

Participants listened to and silently mouthed 100 CVCV nonce words
(2 repetitions each).

C=/p,b,t,d,f,v,s,z/ V=/a,i,u/.
C obeyed both voicing and continuancy harmony simultaneously.

I e.g., X[tipa, bida, fisa], *[tisa, bipa, fida].
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General Experiment Design Training & Testing Phases

General Experiment Design
Possible Generalizations

Training stimuli: [tapi], [sifa], [sasi] . . .

[↵ voice] [↵ cont] [↵ voice, ↵ cont]
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General Experiment Design Training & Testing Phases

General Experiment Design
Testing Phase

Participants were asked if word was possible in the “language” they
learned.

CVCV nonce words of the following types:

I 12 OldStims (e.g., [tipa, bida, fisa])
I 12 NewStims (e.g., [tupi, buda, safi])
I 12 OnlyVoicing (e.g., [tusi, bazi, vabi])
I 12 OnlyContinuancy (e.g., [tadi, zafu, bupi])
I 12 Disharmony (e.g., [tuvi, zipa, fidu])
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Experiments Exp. 1

Experiment 1

25 English-speaking undergraduates
I 3 were excluded due to non-learning.

NewStims: C sequences possibly heard in Training.
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Experiments Exp. 1

Experiment 1
Predictions

SP: NewStims and OldStims preferred over other three (which are
undifferentiated).

SG: Some prefer [↵ voice], some [↵ cont]; NewStims are as acceptable
as either. Thus, all three are equally good.
MSG: Both [↵ voice] and [↵ cont] are preferred; additive effect on
NewStims.
PropSimple: [↵ voice], [↵ cont], and [↵ voice, ↵ cont] are all learned;
therefore, interactive effect on NewStims. However, interaction effect
smaller than either [↵ voice] or [↵ cont].
PropSpec: [↵ voice], [↵ cont], and [↵ voice, ↵ cont] are all learned;
therefore, interactive effect on NewStims. However, interaction effect
larger than either [↵ voice] or [↵ cont].
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Experiments Exp. 1

Experiment 1
Results
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Experiments Exp. 1

Experiment 1
Results

Fixed Effect MeanYes (%) Estimate z-value Pr(>z)
(Intercept) 0.4674 �0.1223 �0.534 0.2968
OnlyVoicing 0.5688 0.4801 2.485 0.0065 **
OnlyCont 0.6268 0.7664 3.897 <0.0001 ***
NewStims 0.8514 2.142 9.05 <0.0001 ***
OldStims 0.8623 2.2292 9.331 <0.0001 ***

Table: Logistic mixed-effects models
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Experiment 1
Results

Fixed Effect Estimate z-value Pr(>z)
(Intercept) �0.1231 �0.544 0.2934
Voicing 0.4758 2.513 0.0059 **
Continuancy 0.7574 3.920 <0.0001 ***
Voicing:Continuancy 0.8881 3.032 0.0012 **

Table: Logistic mixed-effects model—Interaction effects for new test stimuli

Durvasula & Liter NAPhC 9 17 / 41



Experiments Exp. 1

Experiment 1
Discussion

Multiple simple generalizations are learned for ambiguous data.

Furthermore, interaction effect suggests potential support for
PropSimple and PropSpec.
However:

I Perhaps phonological generalizations can also directly access segmental
representations (i.e., segmental primitives) without making reference to
the featural content.

I If so, a generalization based on a single segment might be as “simple”
as a generalization based on a single feature.

I Therefore, MSG could also account for the interaction effect.
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Experiments Exp. 2

Experiment 2

78 English-speaking undergraduates, and 15 were excluded due to
non-learning.

Training stimuli (e.g., [tipa, bida, fisa])

I One pair of consonant sequences withheld (e.g., [vz, zv])
I Identical sequences did occur in training (e.g., [viva, zuzi])
I The consonant pairs that were withheld were randomized per

participant.

Testing stimuli:

I Same as Exp. 1: OldStims, OnlyVoicing, OnlyContinuancy, Disharmony
I NewStims had withheld C sequences (e.g., [vuzi, zuva, zavi])

Therefore, segmental generalizations will not help with the harmony
patterns.
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Experiments Exp. 2

Experiment 2
Prediction

Similar to Exp. 1, but:
I All three (MSG, PropSimple, and PropSpec) predict a drop in

NewStims preference.

I However, PropSimple and PropSpec still predict an interactive effect.
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Experiments Exp. 2

Experiment 2
Results

Fixed Effect MeanYes (%) Estimate z-value Pr(>z)
(Intercept) 0.5317 0.1628 1.273 0.1014
OnlyVoicing 0.5701 0.1735 1.387 0.0825 .
OnlyCont 0.6138 0.3889 3.087 0.0010 **
NewStims 0.6534 0.5836 4.433 <0.0001 ***
OldStims 0.8981 2.2820 14.274 <0.0001 ***

Table: Logistic mixed-effects models
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Experiments Exp. 2

Experiment 2
Results: Was there an interactive effect on NewStims?

Best model was the one with two main effects for Voicing and
Continuancy.

Fixed Effect Estimate z-value Pr(>z)
(Intercept) �0.1841 �1.223 =0.111
Voicing 0.4635 3.100 <0.01 **
Continuancy 0.4972 3.331 <0.001 ***

Table: Logistic mixed-effects models

There was no interaction effect.
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Experiments Exp. 2

Experiment 2
Results: Correlation between the two one-feature generalizations
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Experiments Exp. 2

Experiment 2
Discussion

Noticeable drop in preference for NewStims.

No evidence of interaction effect.
The results are only consistent with participants keeping track of
multiple simple generalizations (MSG).
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Experiments Exp. 3

Experiment 3

Putting MSG to a further test:
I Are the NewStims in Exp. 2 really worse than those in Exp. 1?

I Can we replicate the results?

51 English-speaking undergraduates.
Both types of NewStims (from Exp. 1 & 2):

I NewWordStims: C sequences heard in Training.

Therefore, segmental generalizations will help with the harmony
patterns.

I NewConsStims: C sequences not heard in Training.

Therefore, segmental generalizations will not help with the harmony
patterns.

I Still 60 test items.

10 words for each type (6 types in all).
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Experiments Exp. 3

Experiment 3
Prediction

MSG’s predictions for OnlyVoicing and OnlyContinuancy remain the
same.

MSG predicts only an additive effect for NewConsStims
MSG predicts an interactive (super-additive) effect for NewWordStims
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Experiments Exp. 3

Experiment 3
Results

Fixed Effect MeanYes (%) Estimate z-value Pr(>z)
(Intercept) 0.4667 �0.1354 �0.987 =0.324
OnlyVoicing 0.5627 0.4386 3.122 =0.001 ***
OnlyCont 0.5804 0.5118 3.640 <0.0001 ***
NewConsStims 0.6157 0.6681 4.648 <0.0001 ***
NewWordStims 0.8235 1.8386 11.475 <0.0001 ***
OldStims 0.8667 2.2030 12.771 <0.0001 ***

Table: Logistic mixed-effects models
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Experiments Exp. 3

Experiment 3
Results: Was there an interactive effect on NewConsStims?

Best model was the one with two main effects for Voicing and
Continuancy.

Fixed Effect Estimate z-value Pr(>z)
(Intercept) �0.0689 �0.538 =0.295
Voicing 0.3022 2.948 <0.01 **
Continuancy 0.3737 3.646 <0.001 ***

Table: Logistic mixed-effects models

There was no interaction effect.
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Experiments Exp. 3

Experiment 3
Results: Correlation between the two one-feature generalizations
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Experiments Exp. 3

Experiment 3
Discussion

We replicated the results of Exp. 1 & 2.

The OnlyVoicing and OnlyContinuancy stims were clearly more
preferred than Disharmony.
There was also clear evidence that both simple generalizations were
being learned.
When the confound of experience with consonantal sequences was
controlled for, there was no interactive effect for the NewConsStims.

I As predicted by MSG.
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Phonotactic Learner (Hayes & Wilson 2008)

Hayes & Wilson Phonotactic Learner
Using the learner to make predictions for Experiment 3

This learning model can be seen as an inductive baseline.

I It instantiates the Chomsky & Halle (1968) intuition of learning
maximally general patterns/constraints (among constraints that are
approximately equal in accuracy).

I Note we do not suggest that this is the actual learner, just that it
employs some of the relevant biases.

We used this learner and

I Trained the learner separately for each participant’s Training stimuli.
I Then, used each trained grammar to predict the maxent scores for the

corresponding participant’s Test stimuli.
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Phonotactic Learner (Hayes & Wilson 2008)

Hayes & Wilson Phonotactic Learner
Results on Exp. 3 Training & Test Items

These are the constraints that the learner learns consistently for each
participant’s training data:

I *[+continuant][-continuant]
I *[-continuant][+continuant]
I *[-voice][+voice]
I *[+voice][-voice]

It doesn’t learn the complex/more specific stop-voicing constraints.
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Phonotactic Learner (Hayes & Wilson 2008)

Hayes & Wilson Phonotactic Learner
Discussion

The Hayes & Wilson Phonotactic Learner with its bias for general
patterns accurately captures the non-interactive effect observed in
Exp. 3.

Quite interestingly, the modeling also shows that there is no need to
the learner to keep track of segmental patterns per se, to account for
the NewWordStims.

I Remember, the Phonotactic Learner keeps track of feature-based
phonotactics.

I Complex featural generalizations are enough to account for the
patterns.
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patterns.
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Conclusion & Future Work Discussion

Overall Discussion

We showed today that, in general, participants’ responses to more
specific patterns are at most an addictive effect of more general
patterns.

I Experiment 1 suggested that there might be an interactive effect.
I However, as Experiments 2 & 3 showed, this interactive effect could be

because of experience with relevant segments.
I Once the confound was removed, there was no more interactive effect.

Our claim is not that the learner doesn’t entertain complex
generalizations at all.
Instead, it is that when there is ambiguity, the learner entertains the
more general hypotheses first.
This suggests that the search space is constrained by an evaluation
metric of the kind discussed in (Chomsky and Halle 1968).
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Conclusion & Future Work Discussion

Overall Discussion

Furthermore, we also showed using the Hayes & Wilson model

I Lack of interactive effect is expected if the learning model has a
preference for more general patterns.

I The reason there was an interactive effect for the NewWordStims
(stims with old consonant sequences, but with new vowel
combinations) has to do not with the learner keeping track of
segmental patterns, but with the learner tracking other patterns purely
in terms of more complex featural patterns.
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Conclusion & Future Work

Bayesian models make an interesting claim.
I As the amount of experience increases, general patterns incur a penalty

compared to more specific patterns.
I This is due to the likelihood term that is in models.
I If so, the preference for the general should decrease with increasing

experience.

We are hoping to test this out with a series of experiments looking at
the effect of experience on the magnitude of the effect with general
patterns.

I So, see how participants respond with increasing amounts of data.
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