Modeling the learning of the Person Case Constraint

Adam Liter1 Naomi H. Feldman1,2

1Department of Linguistics, University of Maryland

2UMIACS, University of Maryland

SCiL
January 2, 2020
Grammars and their representations

(1) * Me le recomendó
 1.SG.ACC 3.SG.DAT recommend.PST
 ‘S/he recommended me to her/him’
Grammars and their representations

\[g_1 \]

\[H \]
Grammars and their representations

\[g_1 \]

\[H \]
Grammars and their representations

H_1

\[g_1 \]

\[
\begin{array}{c}
\ast \\
\vdash \\
3 \\
\vdash \\
1 \\
\vdash \\
\ldots
\end{array}
\]

H_2

\[g_1 \]

\[
\begin{array}{c}
\ast \\
\vdash \\
\left[-\text{Part} \right] \\
\vdash \\
\left[+\text{Part} \right] \\
\vdash \\
\ldots
\end{array}
\]
Grammars and their representations

\[g_1 \]

\[H_1 \]

\[g_1 \]

\[H_2 \]
Grammars and their representations

\[H_1 \]
\[g_1 \]
\[g_2 \]
\[g_3 \]
\[g_4 \]
\[g_5 \]

\[H_2 \]
\[g_1 \]
\[g_2 \]
\[g_3 \]
\[g_4 \]
\[g_5 \]
\[g_6 \]
\[g_7 \]
Grammars and their representations

H_1

g_1

g_2

g_5

g_3

g_6

g_4

H_2

g_1

g_2

g_5

g_3

g_4

g_6

g_5

g_7
“this kind of learnability evaluation [...] does not care about whether a [...] theory is appropriately restrictive or economical” (Pearl et al. 2017: 312).

For other similar approaches, see also Pearl & Sprouse (2013), Rasin & Katzir (2017), Pearl & Sprouse (2019).
Roadmap

1. Introduction

2. The Person Case Constraint (PCC)

3. Learning implications

4. Evaluating two theories of the PCC
 4.1 A simple theory of the PCC
 4.2 A feature-based theory of the PCC

5. The learning model

6. Simulations
Clitics

- Clitics are bound morphemes (*i.e.*, affixal morphemes).

(2) \text{Me lo cuentas}

1.SG.DAT 3.SG.ACC tell

‘(You) tell it to me’

- Direct object = \textit{lo}, indirect object = \textit{me}
Restrictions on clitics

▶ When two arguments are realized as clitics, not all combinations are possible.

(1) * Me le recommendó
 1.SG.ACC 3.SG.DAT recommend.PST
 ‘S/he recommended me to her/him’

▶ Direct object = *me, indirect object = le
The Person Case Constraint (PCC)

These sorts of restrictions are part of a broader phenomenon called the PCC (Bonet 1991, 1994).

<table>
<thead>
<tr>
<th>IO↓/DO→</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NA</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>2</td>
<td>*</td>
<td>NA</td>
<td>✓</td>
</tr>
<tr>
<td>3</td>
<td>*</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Table: Me-First PCC (Romanian, Spanish, etc.)
The Person Case Constraint (PCC)

- These sorts of restrictions are part of a broader phenomenon called the PCC (Bonet 1991, 1994).

<table>
<thead>
<tr>
<th>IO↓/DO→</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NA</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>2</td>
<td>*</td>
<td>NA</td>
<td>✓</td>
</tr>
<tr>
<td>3</td>
<td>*</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Table: Me-First PCC (Romanian, Spanish, etc.)

(2) Me lo cuentas
1.SG.DAT 3.SG.ACC tell
‘(You) tell it to me’
These sorts of restrictions are part of a broader phenomenon called the PCC (Bonet 1991, 1994).

<table>
<thead>
<tr>
<th>IO↓/DO→</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NA</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>2</td>
<td>*</td>
<td>NA</td>
<td>✓</td>
</tr>
<tr>
<td>3</td>
<td>*</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Table: Me-First PCC (Romanian, Spanish, etc.)

(1) * Me le recommendó
1.SG.ACC 3.SG.DAT recommend.PST
‘S/he recommended me to her/him’
The Person Case Constraint (PCC)

<table>
<thead>
<tr>
<th>IO↓/DO→</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NA</td>
<td>*</td>
<td>✓</td>
</tr>
<tr>
<td>2</td>
<td>*</td>
<td>NA</td>
<td>✓</td>
</tr>
<tr>
<td>3</td>
<td>*</td>
<td>*</td>
<td>✓</td>
</tr>
</tbody>
</table>

(a) Strong PCC (Greek, Spanish, etc.)

<table>
<thead>
<tr>
<th>IO↓/DO→</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NA</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>2</td>
<td>✓</td>
<td>NA</td>
<td>✓</td>
</tr>
<tr>
<td>3</td>
<td>*</td>
<td>*</td>
<td>✓</td>
</tr>
</tbody>
</table>

(b) Ultrastrong PCC (Classical Arabic, Spanish, etc.)

<table>
<thead>
<tr>
<th>IO↓/DO→</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NA</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>2</td>
<td>*</td>
<td>NA</td>
<td>✓</td>
</tr>
<tr>
<td>3</td>
<td>*</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

(c) Weak PCC (French, Catalan, Spanish, etc.)

<table>
<thead>
<tr>
<th>IO↓/DO→</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NA</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>2</td>
<td>✓</td>
<td>NA</td>
<td>✓</td>
</tr>
<tr>
<td>3</td>
<td>*</td>
<td>*</td>
<td>✓</td>
</tr>
</tbody>
</table>

(d) Me-First PCC (Romanian, Spanish, etc.)
Learning evaluation

- Proof of concept that learning implications are useful for telling apart theories and their representations.

![Diagram showing points g_1, g_2, g_3, g_4, g_5, g_6, and g_7 within two regions H_1 and H_2.]
Evaluating two theories of the PCC

Simple theory

(3)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td>(1 = 1)</td>
</tr>
<tr>
<td>b.</td>
<td>(2 = 2)</td>
</tr>
<tr>
<td>c.</td>
<td>(3 = 3)</td>
</tr>
</tbody>
</table>

Feature-based theory

(4)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td>(1 = \begin{bmatrix} +\text{Auth} \ +\text{Part} \end{bmatrix})</td>
</tr>
<tr>
<td>b.</td>
<td>(2 = \begin{bmatrix} -\text{Auth} \ +\text{Part} \end{bmatrix})</td>
</tr>
<tr>
<td>c.</td>
<td>(3 = \begin{bmatrix} -\text{Auth} \ -\text{Part} \end{bmatrix})</td>
</tr>
</tbody>
</table>
A simple theory of the PCC

<table>
<thead>
<tr>
<th>Grammar</th>
<th>1 2</th>
<th>1 3</th>
<th>2 1</th>
<th>2 3</th>
<th>3 1</th>
<th>3 2</th>
<th>3 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>SG₁</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>SG₂</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>SG₃</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>SG₄</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>SG₅</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>SG₆</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>SG₇</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>SG₈</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Weak PCC

| ... | ... | ... | ... | ... | ... | ... | ... |

Me-First PCC

| ... | ... | ... | ... | ... | ... | ... | ... |

Ultrastrong PCC

| ... | ... | ... | ... | ... | ... | ... | ... |

Strong PCC

...
SG₈₁	*	✓	✓	✓	✓	✓	✓
SG₈₂	*	✓	✓	✓	✓	✓	✓
SG₈₃	*	✓	✓	✓	✓	✓	✓
SG₈₄	*	✓	✓	✓	✓	✓	✓

SG₁₂₈ | * | * | * | * | * | * | * |

Liter & Feldman
Modeling the learning of the Person Case Constraint
Person features are feature bundles, consisting of two binary feature values.

\[
\begin{align*}
1 &= \begin{bmatrix} +\text{Auth} \\
+\text{Part} \end{bmatrix} \\
2 &= \begin{bmatrix} -\text{Auth} \\
+\text{Part} \end{bmatrix} \\
3 &= \begin{bmatrix} -\text{Auth} \\
-\text{Part} \end{bmatrix}
\end{align*}
\]

PCC variants arise based on searching hierarchical syntactic representation for these features and restrictions on this search.
A feature-based theory of the PCC
Nevins (2007)

<table>
<thead>
<tr>
<th>Grammar</th>
<th>1 2</th>
<th>1 3</th>
<th>2 1</th>
<th>2 3</th>
<th>3 1</th>
<th>3 2</th>
<th>3 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>FG₁</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>FG₂</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>∗</td>
<td>∗</td>
<td>✓</td>
</tr>
<tr>
<td>FG₃</td>
<td>✓</td>
<td>✓</td>
<td>∗</td>
<td>✓</td>
<td>∗</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>FG₄</td>
<td>✓</td>
<td>✓</td>
<td>∗</td>
<td>✓</td>
<td>∗</td>
<td>*</td>
<td>✓</td>
</tr>
<tr>
<td>FG₅</td>
<td>∗</td>
<td>∗</td>
<td>∗</td>
<td>∗</td>
<td>∗</td>
<td>∗</td>
<td>✓</td>
</tr>
<tr>
<td>FG₆</td>
<td>*</td>
<td>✓</td>
<td>∗</td>
<td>✓</td>
<td>*</td>
<td>*</td>
<td>✓</td>
</tr>
<tr>
<td>FG₇</td>
<td>*</td>
<td>✓</td>
<td>∗</td>
<td>✓</td>
<td>*</td>
<td>*</td>
<td>✓</td>
</tr>
<tr>
<td>FG₈</td>
<td>*</td>
<td>*</td>
<td>✓</td>
<td>*</td>
<td>✓</td>
<td>*</td>
<td>✓</td>
</tr>
<tr>
<td>FG₉</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>✓</td>
</tr>
</tbody>
</table>

Weak PCC
Me-First PCC
Ultrastrong PCC
Strong PCC
Evaluating two theories of the PCC

Simple theory

(6)
- a. \(1 = 1 \)
- b. \(2 = 2 \)
- c. \(3 = 3 \)

Feature-based theory

(7)
- a. \(1 = [+\text{Auth} \] \)
 \[+\text{Part} \]
- b. \(2 = [-\text{Auth} \] \)
 \[+\text{Part} \]
- c. \(3 = [-\text{Auth} \] \)
 \[-\text{Part} \]
Bayesian learning model

The generative model

\[\vec{s} \vec{\theta} \]

<table>
<thead>
<tr>
<th>IO↓/DO→</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NA</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>2</td>
<td>*</td>
<td>NA</td>
<td>✓</td>
</tr>
<tr>
<td>3</td>
<td>*</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Modeling the learning of the Person Case Constraint

January 2, 2020
Bayesian learning model

The generative model

\[g \rightarrow \theta \]

<table>
<thead>
<tr>
<th>IO↓/DO→</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NA</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>2</td>
<td>*</td>
<td>NA</td>
<td>✓</td>
</tr>
<tr>
<td>3</td>
<td>*</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IO↓/DO→</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NA</td>
<td>0.0004</td>
<td>0.1852</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>NA</td>
<td>0.5475</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0.0152</td>
<td>0.2518</td>
</tr>
</tbody>
</table>
Bayesian learning model

The generative model

<table>
<thead>
<tr>
<th>IO↓/DO→</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NA</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>2</td>
<td>*</td>
<td>NA</td>
<td>✓</td>
</tr>
<tr>
<td>3</td>
<td>*</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IO↓/DO→</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NA</td>
<td>0.0004</td>
<td>0.1852</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>NA</td>
<td>0.5475</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0.0152</td>
<td>0.2518</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IO↓/DO→</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NA</td>
<td>0</td>
<td>50</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>NA</td>
<td>148</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>4</td>
<td>68</td>
</tr>
</tbody>
</table>
Bayesian learning model

Inferring the grammar

- Given \(\mathcal{S} \), our learning model uses Bayes’ rule to infer
 \(p(g \mid \mathcal{S}) \).
- In doing so, we integrate over \(\tilde{\theta} \); importantly, this
 leads to higher likelihoods for grammars that allow
 fewer clitic combinations (cf. Tenenbaum & Griffiths 2001).
Data for simulations
Aguirre (2003)

- Using the Aguirre Corpus (Aguirre 2003) from CHILDES (MacWhinney 2000), we estimated the frequency of clitic combinations in child-directed speech for a dialect of Spanish from Spain.
- 13,411 child-directed utterances extracted with PyLangAcq (Lee et al. 2016).
- Utterances parsed with spaCy (Honnibal & Montani 2017).
- 2% of utterances contained two clitics.
- Smoothing was applied to estimate $\tilde{\theta}$ for simulations.
Data for simulations

Aguirre (2003)

These are speakers of a Me-First PCC language.

<table>
<thead>
<tr>
<th>IO↓/DO→</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NA</td>
<td>0</td>
<td>50</td>
</tr>
<tr>
<td>2</td>
<td>0*</td>
<td>NA</td>
<td>148</td>
</tr>
<tr>
<td>3</td>
<td>0*</td>
<td>4</td>
<td>68</td>
</tr>
</tbody>
</table>
Data for simulations
Aguirre (2003)

- With smoothing:

<table>
<thead>
<tr>
<th>IO↓/DO→</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NA</td>
<td>0.0004</td>
<td>0.1852</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>NA</td>
<td>0.5475</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0.0152</td>
<td>0.2518</td>
</tr>
</tbody>
</table>
Simulations

- Hart & Risley (1995) estimate that children hear 1 million utterances in first 3 years of life, and ≈ 2% of utterances contain two clitics.

- The extracted counts, with smoothing, were used to simulate corpora with \(n \) PCC constructions for \(n = 66, n = 666, \) and \(n = 6,666 \).

- We trained Simple learning models and Feature-based learning models with 1,000 replications for each corpus size.
Results

- red = target grammar; black = non-target grammar

<table>
<thead>
<tr>
<th>Grammar</th>
<th>Mean posterior probability of grammar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple theory</td>
<td></td>
</tr>
<tr>
<td>Feature-based theory</td>
<td></td>
</tr>
</tbody>
</table>
Results
Corpuse size: 6,666

- red = target grammar; black = non-target grammar

![Graph showing mean posterior probability of grammar for Simple theory and Feature-based theory with points at SG_{21} and FG_{3}]

Liter & Feldman
Modeling the learning of the Person Case Constraint
Results

Corpuse size: 666

- red = target grammar; black = non-target grammar

![Graph showing the mean posterior probability of grammar for Simple theory and Feature-based theory with points for SG21, SG85, and FG3]
Results

Corpus size: 66

- red = target grammar; black = non-target grammar

<table>
<thead>
<tr>
<th>Simple theory</th>
<th>Feature-based theory</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mean posterior probability of grammar

Grammar

Grammar: SG_85, SG_87, FG_3, FG_6, FG_7
Discussion

- Both class of hypotheses learn the target grammar, but the simple model is led astray when there is less data.
- Simple theory does have larger hypothesis space, but even with only 66 data points, each theory is only assigning probability to a few grammars (i.e., not just about size of hypothesis space).
Discussion

▶ Both class of hypotheses learn the target grammar, but the simple model is led astray when there is less data.

▶ Simple theory does have larger hypothesis space, but even with only 66 data points, each theory is only assigning probability to a few grammars (i.e., not just about size of hypothesis space).

▶ Modeling learning in this way can therefore be informative for telling apart theories and their representations.

▶ Especially true with information on age of acquisition and/or patterns of variation across dialects.
Discussion

Age of acquisition

- Unfortunately little is known about PCC age of acquisition.
- Tsakali & Wexler (2010) report that 5-year-old Greek-acquiring children know the PCC.
- Blasco (2000) show that Spanish-acquiring children were correctly producing accusative and dative clitics by 2;2.
Discussion

Key takeaways

- Proof of concept for using learning considerations to tell apart different theoretical and representational assumptions in domain of person features and PCC.

- Similar learning models can be run for other more restrictive theories of the PCC (e.g., Béjar & Rezac 2003, Pancheva & Zubizarreta 2018, Graf 2019) and for other PCC variants.

- Would want to see if other restrictive theories are ever led astray toward unattested variants.
Discussion

Key takeaways

▶ Proof of concept for using learning considerations to tell apart different theoretical and representational assumptions in domain of person features and PCC.

▶ Similar learning models can be run for other more restrictive theories of the PCC (e.g., Béjar & Rezac 2003, Pancheva & Zubizarreta 2018, Graf 2019) and for other PCC variants.

▶ Would want to see if other restrictive theories are ever led astray toward unattested variants.
Acknowledgments

Thanks to:

▷ Norbert Hornstein, Jeff Lidz, and Omer Preminger for helpful discussion;
▷ the University of Maryland CNL Lab for helpful discussion; and
▷ support from the NSF NRT grant (NSF: #1449815).

References II

References V

A feature-based theory of the PCC
Nevins (2007)

\(FG_1 = [] \)
\(FG_2 = [+\text{Part}] \)
\(FG_3 = [+\text{Auth}] \)
\(FG_4 = [+\text{Part} \quad +\text{Auth}] \)
\(FG_5 = [\text{Auth}/[+\text{Part}] \quad \text{Part}/[-\text{Auth}]] \)
\(FG_6 = [\text{Auth}/[+\text{Part}]] \)
\(FG_7 = [\text{Auth}/[+\text{Part}] \quad +\text{Part}] \)
\(FG_8 = [\text{Part}/[-\text{Auth}]] \)
\(FG_9 = [\text{Part}/[-\text{Auth}] \quad +\text{Auth}] \)
A feature-based theory of the PCC
Nevins (2007)

Search is subject to two conditions:

1. Any argument that occurs in between the probe that initiates the search and the target of the search must itself also be a target.

2. All arguments in the domain of the search must share the same value (⁺ or ⁻).
Consider the grammar $FG_2 = v[\ +\text{Part}]$ (i.e., the Weak PCC) and *3 1.

This violates the first condition.

\begin{equation}
*
\end{equation}
Consider the grammar $FG_6 = v[\text{Auth/} [+\text{Part}]]$ (i.e., the Strong PCC) and *12.

This violates the second condition.

\[(18) \quad *\]

[Diagram of a syntactic tree showing the violation of the Person Case Constraint (PCC)]
Aguirre corpus parsing

- se was treated as a third person pronoun.
- The case information assigned by spacy to each clitic was the main basis for classifying the clitic as the direct or indirect object.
Aguirre corpus examples

1 3 ($n = 50$)

(19) ésta me la he comprado yo.

(20) oye, ese pez luego nos lo podemos subir para la bañera, vale?

(21) bueno nos la ponemos, vale?

...

2 3 ($n = 148$)

(22) esto te lo has mojado.

(23) te la vas a comer a la gallina?

(24) a bañar, que en el baño te lo pasas muy bien también.

...

3 2 ($n = 4$)

(25) ahora te le pongo.

(26) ése te le pongo mañana.

(27) te le vas a llevar el hipopótamo a la oficina.

(28) te le vas a meter el cepillo en el agua?

...

3 3 ($n = 68$)

(29) se la has comprado tú?

(30) a dónde se la has dado?

(31) a ver como se lo dices tú.

...